Semi-Supervised Learning (SSL) and Unsupervised Domain Adaptation (UDA) enhance the model performance by exploiting information from labeled and unlabeled data. The clustering assumption has proven advantageous for learning with limited supervision and states that data points belonging to the same cluster in a high-dimensional space should be assigned to the same category. Recent works have utilized different training mechanisms to implicitly enforce this assumption for the SSL and UDA. In this work, we take a different approach by explicitly involving a differentiable clustering module which is extended to leverage the supervised data to compute its centroids. We demonstrate the effectiveness of our straightforward end-to-end training strategy for SSL and UDA over extensive experiments and highlight its benefits, especially in low supervision regimes, both as a standalone model and as a regularizer for existing approaches.


翻译:半监督学习(SSL)与无监督领域自适应(UDA)通过利用标注与未标注数据中的信息来提升模型性能。聚类假设已被证明对有限监督下的学习具有优势,其主张高维空间中属于同一簇的数据点应被分配至同一类别。近期研究采用不同的训练机制,在SSL与UDA中隐式地强化这一假设。本文提出一种不同的方法,通过显式引入可微分聚类模块,并扩展该模块以利用监督数据计算其聚类中心。我们通过大量实验验证了这种简洁的端到端训练策略在SSL与UDA中的有效性,并强调其优势——尤其在低监督条件下,既可作为独立模型使用,亦可作为现有方法的正则化器。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员