We study the problem of constructing Steiner Minimal Trees (SMTs) in hyperbolic space. Exact SMT computation is NP-hard, and existing hyperbolic heuristics such as HyperSteiner are deterministic and often get trapped in locally suboptimal configurations. We introduce Randomized HyperSteiner (RHS), a stochastic Delaunay triangulation heuristic that incorporates randomness into the expansion process and refines candidate trees via Riemannian gradient descent optimization. Experiments on synthetic data sets and a real-world single-cell transcriptomic data show that RHS outperforms Minimum Spanning Tree (MST), Neighbour Joining, and vanilla HyperSteiner (HS). In near-boundary configurations, RHS can achieve a 32% reduction in total length over HS, demonstrating its effectiveness and robustness in diverse data regimes.


翻译:本文研究双曲空间中Steiner最小树的构建问题。精确SMT计算是NP难的,现有双曲启发式算法(如HyperSteiner)具有确定性,常陷入局部次优构型。我们提出随机化HyperSteiner,这是一种随机Delaunay三角剖分启发式算法,通过在扩展过程中引入随机性,并利用黎曼梯度下降优化对候选树进行细化。在合成数据集和真实单细胞转录组数据上的实验表明,RHS在性能上优于最小生成树、邻接连接法及原始HyperSteiner算法。在近边界构型中,RHS相比HS可实现总长度32%的缩减,证明了其在多样化数据体系中的有效性与鲁棒性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员