At the core of portrait photography is the search for ideal lighting and viewpoint. The process often requires advanced knowledge in photography and an elaborate studio setup. In this work, we propose Holo-Relighting, a volumetric relighting method that is capable of synthesizing novel viewpoints, and novel lighting from a single image. Holo-Relighting leverages the pretrained 3D GAN (EG3D) to reconstruct geometry and appearance from an input portrait as a set of 3D-aware features. We design a relighting module conditioned on a given lighting to process these features, and predict a relit 3D representation in the form of a tri-plane, which can render to an arbitrary viewpoint through volume rendering. Besides viewpoint and lighting control, Holo-Relighting also takes the head pose as a condition to enable head-pose-dependent lighting effects. With these novel designs, Holo-Relighting can generate complex non-Lambertian lighting effects (e.g., specular highlights and cast shadows) without using any explicit physical lighting priors. We train Holo-Relighting with data captured with a light stage, and propose two data-rendering techniques to improve the data quality for training the volumetric relighting system. Through quantitative and qualitative experiments, we demonstrate Holo-Relighting can achieve state-of-the-arts relighting quality with better photorealism, 3D consistency and controllability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员