We describe Query Defunctionalization which enables off-the-shelf first-order database engines to process queries over first-class functions. Support for first-class functions is characterized by the ability to treat functions like regular data items that can be constructed at query runtime, passed to or returned from other (higher-order) functions, assigned to variables, and stored in persistent data structures. Query defunctionalization is a non-invasive approach that transforms such function-centric queries into the data-centric operations implemented by common query processors. Experiments with XQuery and PL/SQL database systems demonstrate that first-order database engines can faithfully and efficiently support the expressive "functions as data" paradigm.


翻译:我们描述“查询分解功能”使现成的第一阶数据库引擎能够处理头等功能的查询。支持头等功能的特点是有能力处理功能,如在查询运行时可以建造、传给其他(高阶)功能或从其他(高阶)功能中返回、分配给变量并存储在持久性数据结构中的常规数据项。“查询分解功能”是一种非侵入性方法,将这种以功能为中心的查询转换成由通用查询处理器执行的以数据为中心的操作。与 XQuery 和 PL/SQL 数据库系统的实验表明,第一阶数据库引擎可以忠实和有效地支持“数据功能”的表达式。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员