Longitudinal processes often pose nonlinear change patterns. Latent basis growth models (LBGMs) provide a versatile solution without requiring specific functional forms. Building on the LBGM specification for unequally-spaced waves and individual occasions proposed by Liu and Perera (2023), we extend LBGMs to multivariate longitudinal outcomes. This provides a unified approach to nonlinear, interconnected trajectories. Simulation studies demonstrate that the proposed model can provide unbiased and accurate estimates with target coverage probabilities for the parameters of interest. Real-world analyses of reading and mathematics scores demonstrates its effectiveness in analyzing joint developmental processes that vary in temporal patterns. Computational code is included.


翻译:纵向过程常呈现非线性变化模式。潜在基增长模型(LBGM)提供了一种无需预设具体函数形式的灵活解决方案。基于Liu和Perera(2023)提出的针对非等距测量波次及个体时点的LBGM设定,我们将LBGM扩展至多变量纵向结果。这为非线性且相互关联的发展轨迹提供了统一分析方法。模拟研究表明,所提模型能够为目标参数提供无偏且精确的估计,并达到预期的覆盖概率。对阅读与数学成绩的实际数据分析验证了该方法在分析时间模式各异的联合发展过程中的有效性。文中附有计算代码。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员