Text-to-image diffusion models (T2I DMs), represented by Stable Diffusion, which generate highly realistic images based on textual input, have been widely used, but their flexibility also makes them prone to misuse for producing harmful or unsafe content. Concept unlearning has been used to prevent text-to-image diffusion models from being misused to generate undesirable visual content. However, existing methods struggle to trade off unlearning effectiveness with the preservation of generation quality. To address this limitation, we propose Key Step Concept Unlearning (KSCU), which selectively fine-tunes the model at key steps to the target concept. KSCU is inspired by the fact that different diffusion denoising steps contribute unequally to the final generation. Compared to previous approaches, which treat all denoising steps uniformly, KSCU avoids over-optimization of unnecessary steps for higher effectiveness and reduces the number of parameter updates for higher efficiency. For example, on the I2P dataset, KSCU outperforms ESD by 8.3% in nudity unlearning accuracy while improving FID by 8.4%, and achieves a high overall score of 0.92, substantially surpassing all other SOTA methods.


翻译:以Stable Diffusion为代表的文本到图像扩散模型(T2I DMs)能够根据文本输入生成高度逼真的图像,已获得广泛应用,但其灵活性也使其容易被滥用于生成有害或不安全内容。概念遗忘技术已被用于防止文本到图像扩散模型被滥用于生成不良视觉内容。然而,现有方法难以在遗忘效果与生成质量保持之间取得平衡。为突破此局限,我们提出关键步骤概念遗忘(KSCU)方法,该方法选择性地在针对目标概念的关键步骤对模型进行微调。KSCU的提出基于以下发现:扩散去噪过程中不同步骤对最终生成的贡献并不均衡。相较于以往对所有去噪步骤进行统一处理的方法,KSCU通过避免对非必要步骤的过度优化来提升遗忘效果,并通过减少参数更新次数来提高效率。例如在I2P数据集上,KSCU在色情内容遗忘准确率上比ESD方法提升8.3%,同时将FID指标改善8.4%,并取得0.92的综合高分,显著超越所有其他前沿方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员