We introduce Kolmogorov--Arnold Neural Operator (KANO), a dual-domain neural operator jointly parameterized by both spectral and spatial bases with intrinsic symbolic interpretability. We theoretically demonstrate that KANO overcomes the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains expressive over generic position-dependent dynamics (variable coefficient PDEs) for any physical input, whereas FNO stays practical only for spectrally sparse operators and strictly imposes a fast-decaying input Fourier tail. We verify our claims empirically on position-dependent differential operators, for which KANO robustly generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs ground-truth Hamiltonians in closed-form symbolic representations accurate to the fourth decimal place in coefficients and attains $\approx 6\times10^{-6}$ state infidelity from projective measurement data, substantially outperforming that of the FNO trained with ideal full wave function data, $\approx 1.5\times10^{-2}$, by orders of magnitude.


翻译:我们提出 Kolmogorov-Arnold 神经算子(KANO),这是一种双域神经算子,通过谱基和空间基联合参数化,具有内在的符号可解释性。我们从理论上证明,KANO 克服了傅里叶神经算子(FNO)的纯谱瓶颈:对于任意物理输入,KANO 在通用的位置相关动力学(变系数偏微分方程)上仍保持表达能力,而 FNO 仅对谱稀疏算子保持实用性,并严格强制输入傅里叶尾快速衰减。我们在位置相关微分算子上实证验证了我们的主张,KANO 在这些算子上表现出稳健的泛化能力,而 FNO 则失败。在量子哈密顿量学习基准测试中,KANO 以闭式符号表示重构了真实哈密顿量,系数精度达到小数点后第四位,并从投影测量数据中获得了约 $6\times10^{-6}$ 的状态保真度损失,这显著优于使用理想全波函数数据训练的 FNO 的约 $1.5\times10^{-2}$ 的结果,提升了数个数量级。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年11月1日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Arxiv
30+阅读 · 2019年3月13日
Arxiv
10+阅读 · 2018年2月17日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2021年11月1日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Arxiv
30+阅读 · 2019年3月13日
Arxiv
10+阅读 · 2018年2月17日
Arxiv
12+阅读 · 2018年1月28日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员