We study an entropy functional $H_K$ that is sensitive to a prescribed similarity structure on a state space. For finite spaces, $H_K$ coincides with the order-1 similarity-sensitive entropy of Leinster and Cobbold. We work in the general measure-theoretic setting of kernelled probability spaces $(Ω,μ,K)$ introduced by Leinster and Roff, and develop basic structural properties of $H_K$. Our main results concern the behavior of $H_K$ under coarse-graining. For a measurable map $f:Ω\to Y$ and input law $μ$, we define a law-induced kernel on $Y$ whose pullback minimally dominates $K$, and show that it yields a coarse-graining inequality and a data-processing inequality for $H_K$, for both deterministic maps and general Markov kernels. We also introduce conditional similarity-sensitive entropy and an associated mutual information, and compare their behavior to the classical Shannon case.


翻译:我们研究一种对状态空间上指定相似度结构敏感的熵泛函 $H_K$。对于有限空间,$H_K$ 与 Leinster 和 Cobbold 提出的一阶相似度敏感熵一致。我们在 Leinster 和 Roff 引入的核化概率空间 $(Ω,μ,K)$ 的一般测度论框架下展开工作,并发展了 $H_K$ 的基本结构性质。我们的主要结果关注 $H_K$ 在粗粒化下的行为。对于可测映射 $f:Ω\to Y$ 和输入分布 $μ$,我们定义了 $Y$ 上的一个由分布诱导的核,其回拉最小支配 $K$,并证明该核为 $H_K$ 导出了粗粒化不等式和数据处理不等式,这些结果对确定性映射和一般马尔可夫核均成立。我们还引入了条件相似度敏感熵及其对应的互信息,并将其行为与经典香农情形进行了比较。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
26+阅读 · 2021年8月11日
专知会员服务
23+阅读 · 2021年6月22日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
26+阅读 · 2021年8月11日
专知会员服务
23+阅读 · 2021年6月22日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员