Autonomous driving has rapidly evolved through synergistic developments in hardware and artificial intelligence. This comprehensive review investigates traffic datasets and simulators as dual pillars supporting autonomous vehicle (AV) development. Unlike prior surveys that examine these resources independently, we present an integrated analysis spanning the entire AV pipeline-perception, localization, prediction, planning, and control. We evaluate annotation practices and quality metrics while examining how geographic diversity and environmental conditions affect system reliability. Our analysis includes detailed characterizations of datasets organized by functional domains and an in-depth examination of traffic simulators categorized by their specialized contributions to research and development. The paper explores emerging trends, including novel architecture frameworks, multimodal AI integration, and advanced data generation techniques that address critical edge cases. By highlighting the interconnections between real-world data collection and simulation environments, this review offers researchers a roadmap for developing more robust and resilient autonomous systems equipped to handle the diverse challenges encountered in real-world driving environments.


翻译:自动驾驶技术通过硬件与人工智能的协同发展迅速演进。本综述将交通数据集与仿真器作为支撑自动驾驶车辆发展的两大支柱进行系统性考察。与以往独立分析这些资源的研究不同,我们提出了一种贯穿整个自动驾驶流程——感知、定位、预测、规划与控制——的整合分析框架。在评估数据标注规范与质量指标的同时,我们深入探究了地理多样性与环境条件对系统可靠性的影响。分析内容包含按功能领域组织的数据集详细特征描述,以及对按研发专项贡献分类的交通仿真器的深度剖析。本文探讨了新兴技术趋势,包括应对关键边缘案例的新型架构框架、多模态人工智能融合及先进数据生成技术。通过揭示现实世界数据采集与仿真环境之间的内在联系,本综述为研究者提供了开发更鲁棒、更具适应性的自动驾驶系统的路线图,使其能够有效应对现实驾驶环境中遇到的各种复杂挑战。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员