Social networking services (SNS) have become integral to modern life to create and maintain meaningful relationships. Nevertheless, their historic growth of features has led to labyrinthine user interfaces (UIs) that often result in frustration among users - for instance, when trying to control privacy-related settings. This paper aims to mitigate labyrinthine UIs by studying users' expectations (N=21) through an online card sorting exercise based on 58 common SNS UI features, teaching us about their expectations regarding the importance of specific UI features and the frequency with which they use them. Our findings offer a valuable understanding of the relationship between the importance and frequency of UI features and provide design considerations for six identified UI feature groups. Through these findings, we inform the design and development of user-centred alternatives to current SNS interfaces that enable users to successfully navigate SNS and feel in control over their data by meeting their expectations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

SNS,全称Social Networking Services,即社会性网络服务,专指旨在帮助人们建立社会性网络的互联网应用服务。也指社会现有已成熟普及的信息载体,如短信SMS服务。SNS的另一种常用解释:全称Social Network Site,即“社交网站”或“社交网”。社会性网络(Social Networking)是指个人之间的关系网络,这种基于社会网络关系系统思想的网站就是社会性网络网站(SNS网站)。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员