The classic Mallows model is a foundational tool for modeling user preferences. However, it has limitations in capturing real-world scenarios, where users often focus only on a limited set of preferred items and are indifferent to the rest. To address this, extensions such as the top-k Mallows model have been proposed, aligning better with practical applications. In this paper, we address several challenges related to the generalized top-k Mallows model, with a focus on analyzing buyer choices. Our key contributions are: (1) a novel sampling scheme tailored to generalized top-k Mallows models, (2) an efficient algorithm for computing choice probabilities under this model, and (3) an active learning algorithm for estimating the model parameters from observed choice data. These contributions provide new tools for analysis and prediction in critical decision-making scenarios. We present a rigorous mathematical analysis for the performance of our algorithms. Furthermore, through extensive experiments on synthetic data and real-world data, we demonstrate the scalability and accuracy of our proposed methods, and we compare the predictive power of Mallows model for top-k lists compared to the simpler Multinomial Logit model.


翻译:经典的Mallows模型是建模用户偏好的基础工具。然而,它在捕捉现实场景方面存在局限,因为用户通常只关注有限的偏好项目集,而对其余项目漠不关心。为解决此问题,已有诸如top-k Mallows模型等扩展被提出,这些扩展能更好地与实际应用相契合。本文针对广义化top-k Mallows模型相关的若干挑战展开研究,重点分析买家选择行为。我们的主要贡献包括:(1) 一种专为广义化top-k Mallows模型设计的新颖采样方案,(2) 一种在该模型下计算选择概率的高效算法,以及(3) 一种从观测选择数据中估计模型参数的主动学习算法。这些贡献为关键决策场景下的分析与预测提供了新工具。我们对所提算法的性能进行了严格的数学分析。此外,通过在合成数据和真实数据上进行大量实验,我们证明了所提方法的可扩展性和准确性,并比较了Mallows模型针对top-k列表的预测能力与更简单的多项Logit模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员