We consider the problem of clustering data points coming from sub-Gaussian mixtures. Existing methods that provably achieve the optimal mislabeling error, such as the Lloyd algorithm, are usually vulnerable to outliers. In contrast, clustering methods seemingly robust to adversarial perturbations are not known to satisfy the optimal statistical guarantees. We propose a simple robust algorithm based on the coordinatewise median that obtains the optimal mislabeling rate even when we allow adversarial outliers to be present. Our algorithm achieves the optimal error rate in constant iterations when a weak initialization condition is satisfied. In the absence of outliers, in fixed dimensions, our theoretical guarantees are similar to that of the Lloyd algorithm. Extensive experiments on various simulated and public datasets are conducted to support the theoretical guarantees of our method.


翻译:我们研究从亚高斯混合模型中生成的数据点聚类问题。现有方法(如Lloyd算法)虽能理论达到最优误标错误率,但通常对异常值敏感。相反,看似对对抗扰动具有鲁棒性的聚类方法尚未被证明满足最优统计保证。我们提出一种基于坐标中位数的简单鲁棒算法,即使在存在对抗性异常值的情况下,仍能获得最优误标率。当满足弱初始化条件时,该算法可在常数次迭代内达到最优错误率。在没有异常值的固定维度场景中,我们的理论保证与Lloyd算法相似。通过在多种模拟和公开数据集上的大量实验,验证了本方法的理论保证。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
57+阅读 · 2022年1月5日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员