How to enable agents to predict the outcomes of their own motion intentions in three-dimensional space has been a fundamental problem in embodied intelligence. To explore general spatial imagination capability, we present AirScape, the first world model designed for six-degree-of-freedom aerial agents. AirScape predicts future observation sequences based on current visual inputs and motion intentions. Specifically, we construct a dataset for aerial world model training and testing, which consists of 11k video-intention pairs. This dataset includes first-person-view videos capturing diverse drone actions across a wide range of scenarios, with over 1,000 hours spent annotating the corresponding motion intentions. Then we develop a two-phase schedule to train a foundation model--initially devoid of embodied spatial knowledge--into a world model that is controllable by motion intentions and adheres to physical spatio-temporal constraints. Experimental results demonstrate that AirScape significantly outperforms existing foundation models in 3D spatial imagination capabilities, especially with over a 50% improvement in metrics reflecting motion alignment. The project is available at: https://embodiedcity.github.io/AirScape/.


翻译:如何使智能体能够预测其在三维空间中自身运动意图的结果,一直是具身智能领域的一个基本问题。为探索通用的空间想象能力,我们提出了AirScape,这是首个为六自由度空中智能体设计的世界模型。AirScape能够基于当前视觉输入和运动意图预测未来的观测序列。具体而言,我们构建了一个用于空中世界模型训练和测试的数据集,该数据集包含11k个视频-意图对。这些第一人称视角视频捕捉了无人机在广泛场景下的多样化动作,并耗费超过1,000小时标注了相应的运动意图。随后,我们设计了一个两阶段训练方案,将一个最初不具备具身空间知识的基础模型,训练成一个可由运动意图控制并遵循物理时空约束的世界模型。实验结果表明,AirScape在3D空间想象能力上显著优于现有的基础模型,尤其是在反映运动对齐的指标上实现了超过50%的提升。项目地址为:https://embodiedcity.github.io/AirScape/。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2023年5月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员