Image stitching synthesizes images captured from multiple perspectives into a single image with a broader field of view. The significant variations in object depth often lead to large parallax, resulting in ghosting and misalignment in the stitched results. To address this, we propose a depth-consistency-constrained seamless-free image stitching method. First, to tackle the multi-view alignment difficulties caused by parallax, a multi-stage mechanism combined with global depth regularization constraints is developed to enhance the alignment accuracy of the same apparent target across different depth ranges. Second, during the multi-view image fusion process, an optimal stitching seam is determined through graph-based low-cost computation, and a soft-seam region is diffused to precisely locate transition areas, thereby effectively mitigating alignment errors induced by parallax and achieving natural and seamless stitching results. Furthermore, considering the computational overhead in the shift regression process, a reparameterization strategy is incorporated to optimize the structural design, significantly improving algorithm efficiency while maintaining optimal performance. Extensive experiments demonstrate the superior performance of the proposed method against the existing methods. Code is available at https://github.com/DLUT-YRH/DSFN.


翻译:图像拼接技术将多视角拍摄的图像合成为一幅具有更广阔视野的单幅图像。物体深度的显著变化常导致较大视差,进而使拼接结果出现重影与错位。为解决此问题,我们提出一种深度一致性约束的无缝合线图像拼接方法。首先,针对视差引起的多视角对齐难题,构建了结合全局深度正则化约束的多阶段机制,以提升不同深度范围内同一表观目标的对齐精度。其次,在多视角图像融合过程中,通过基于图的低成本计算确定最优拼接缝,并扩散软接缝区域以精确定位过渡区,从而有效缓解视差引起的对齐误差,实现自然无缝的拼接效果。此外,考虑到偏移回归过程中的计算开销,引入重参数化策略优化结构设计,在保持最优性能的同时显著提升算法效率。大量实验证明,所提方法相较于现有方法具有更优越的性能。代码公开于 https://github.com/DLUT-YRH/DSFN。

0
下载
关闭预览

相关内容

图像拼接(image stitching)是指将两张或更多的有重叠部分的影像,拼接成一张全景图或是高分辨率影像的技术。图像拼接有两大步骤:图像配准和图像融合
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员