In order to handle the increasing complexity of software systems, Artificial Intelligence (AI) has been applied to various areas of software engineering, including requirements engineering, coding, testing, and debugging. This has led to the emergence of AI for Software Engineering as a distinct research area within the field of software engineering. With the development of quantum computing, the field of Quantum AI (QAI) is arising, enhancing the performance of classical AI and holding significant potential for solving classical software engineering problems. Some initial applications of QAI in software engineering have already emerged, such as test case optimization. However, the path ahead remains open, offering ample opportunities to solve complex software engineering problems cost-effectively with QAI. To this end, this paper presents a roadmap towards the application of QAI in software engineering. Specifically, we consider two of the main categories of QAI, i.e., quantum optimization algorithms and quantum machine learning. For each software engineering phase, we discuss how these QAI approaches can address some of the tasks associated with that phase. Moreover, we provide an overview of some of the possible challenges that need to be addressed to make the application of QAI for software engineering successful.


翻译:为应对软件系统日益增长的复杂性,人工智能已被应用于软件工程的多个领域,包括需求工程、编码、测试和调试。这促使"面向软件工程的人工智能"成为软件工程领域一个独立的研究方向。随着量子计算的发展,量子人工智能领域正在兴起,它能够提升经典人工智能的性能,并为解决传统软件工程问题展现出巨大潜力。量子人工智能在软件工程中的初步应用已经出现,例如测试用例优化。然而,前路依然广阔,为利用量子人工智能经济高效地解决复杂软件工程问题提供了丰富机遇。为此,本文提出了量子人工智能在软件工程中应用的路线图。具体而言,我们聚焦量子人工智能的两大主要类别——量子优化算法与量子机器学习。针对每个软件工程阶段,我们探讨了这些量子人工智能方法如何应对该阶段的相关任务。此外,我们还概述了为实现量子人工智能在软件工程中的成功应用所需应对的部分潜在挑战。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员