The convexity number of a set $X \subset \mathbb{R}^2$ is the minimum number of convex subsets required to cover it. We study the following question: what is the largest possible convexity number $f(n)$ of $\mathbb{R}^2 \setminus S$, where $S$ is a set of $n$ points in general position in the plane? We prove that for all $n \geq 4$, $\lfloor\frac{n+5}{2}\rfloor \leq f(n) \leq \frac{7n+44}{11}$. We also show that for every $n \geq 4$, if the points of $S$ are in convex position then the convexity number of $\mathbb{R}^2 \setminus S$ is $\lfloor\frac{n+5}{2}\rfloor$. This solves a problem of Lawrence and Morris [Finite sets as complements of finite unions of convex sets, Disc. Comput. Geom. 42 (2009), 206-218].


翻译:集合 $X \subset \mathbb{R}^2$ 的凸性数是指覆盖该集合所需凸子集的最小数目。我们研究以下问题:对于平面上处于一般位置的 $n$ 个点构成的集合 $S$,其补集 $\mathbb{R}^2 \setminus S$ 可能的最大凸性数 $f(n)$ 是多少?我们证明对于所有 $n \geq 4$,有 $\lfloor\frac{n+5}{2}\rfloor \leq f(n) \leq \frac{7n+44}{11}$。我们还证明,对于每个 $n \geq 4$,若 $S$ 的点处于凸位置,则 $\mathbb{R}^2 \setminus S$ 的凸性数为 $\lfloor\frac{n+5}{2}\rfloor$。这解决了 Lawrence 和 Morris 提出的一个问题 [Finite sets as complements of finite unions of convex sets, Disc. Comput. Geom. 42 (2009), 206-218]。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
42+阅读 · 2021年4月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关主题
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
42+阅读 · 2021年4月2日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员