We study the \textsc{$\alpha$-Fixed Cardinality Graph Partitioning ($\alpha$-FCGP)} problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph $G$, two numbers $k,p$ and $0\leq\alpha\leq 1$, the question is whether there is a set $S\subseteq V$ of size $k$ with a specified coverage function $cov_{\alpha}(S)$ at least $p$ (or at most $p$ for the minimization version). The coverage function $cov_{\alpha}(\cdot)$ counts edges with exactly one endpoint in $S$ with weight $\alpha$ and edges with both endpoints in $S$ with weight $1 - \alpha$. $\alpha$-FCGP generalizes a number of fundamental graph problems such as \textsc{Densest $k$-Subgraph}, \textsc{Max $k$-Vertex Cover}, and \textsc{Max $(k,n-k)$-Cut}. A natural question in the study of $\alpha$-FCGP is whether the algorithmic results known for its special cases, like \textsc{Max $k$-Vertex Cover}, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for \textsc{Max $k$-Vertex Cover} is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greed vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for $\alpha > 0$ and the subexponential-time algorithms for the problem on apex-minor free graphs for maximization with $\alpha > 1/3$ and minimization with $\alpha < 1/3$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员