The early identification of diseases in cocoa pods is an important task to guarantee the production of high-quality cocoa. The use of artificial intelligence techniques such as machine learning, computer vision and deep learning are promising solutions to help identify and classify diseases in cocoa pods. In this paper we introduce the development and evaluation of a deep learning computational model applied to the identification of diseases in cocoa pods, focusing on "monilia" and "black pod" diseases. An exhaustive review of state-of-the-art of computational models was carried out, based on scientific articles related to the identification of plant diseases using computer vision and deep learning techniques. As a result of the search, EfficientDet-Lite4, an efficient and lightweight model for object detection, was selected. A dataset, including images of both healthy and diseased cocoa pods, has been utilized to train the model to detect and pinpoint disease manifestations with considerable accuracy. Significant enhancements in the model training and evaluation demonstrate the capability of recognizing and classifying diseases through image analysis. Furthermore, the functionalities of the model were integrated into an Android native mobile with an user-friendly interface, allowing to younger or inexperienced farmers a fast and accuracy identification of health status of cocoa pods


翻译:暂无翻译

0
下载
关闭预览

相关内容

Cocoa 是苹果公司为 Mac OS X 所创建的原生面向对象的编程环境,是 Mac OS X 上五大 API 之一。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年7月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员