A pseudorandom code is a keyed error-correction scheme with the property that any polynomial number of encodings appear random to any computationally bounded adversary. We show that the pseudorandomness of any code tolerating a constant rate of random errors cannot be based on black-box reductions to almost any generic cryptographic primitive: for instance, anything that can be built from random oracles, generic multilinear groups, and virtual black-box obfuscation. Our result is optimal, as Ghentiyala and Guruswami (2024) observed that pseudorandom codes tolerating any sub-constant rate of random errors exist using a black-box reduction from one-way functions. The key technical ingredient in our proof is the hypercontractivity theorem for Boolean functions, which we use to prove our impossibility in the random oracle model. It turns out that this easily extends to an impossibility in the presence of ``crypto oracles,'' a notion recently introduced -- and shown to be capable of implementing all the primitives mentioned above -- by Lin, Mook, and Wichs (EUROCRYPT 2025).


翻译:伪随机码是一种带密钥的纠错方案,其特性是任何多项式数量的编码对任何计算受限的敌手而言都呈现随机性。我们证明,任何能容忍恒定随机错误率的码的伪随机性,都无法基于黑盒归约到几乎所有通用密码学原语:例如,任何可从随机预言机、通用多线性群和虚拟黑盒混淆构建的原语。我们的结果是最优的,因为Ghentiyala和Guruswami(2024)观察到,使用单向函数的黑盒归约可以构造出能容忍任何次恒定随机错误率的伪随机码。我们证明中的关键技术要素是布尔函数的超压缩性定理,我们用它来证明在随机预言机模型中的不可能性。事实证明,这很容易扩展到存在"密码预言机"时的不可能性——这一概念由Lin、Mook和Wichs(EUROCRYPT 2025)最近提出,并被证明能够实现上述所有原语。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员