The proliferation of autonomous AI agents within enterprise environments introduces a critical security challenge: managing access control for emergent, novel tasks for which no predefined policies exist. This paper introduces an advanced security framework that extends the Task-Based Access Control (TBAC) model by using a Large Language Model (LLM) as an autonomous, risk-aware judge. This model makes access control decisions not only based on an agent's intent but also by explicitly considering the inherent \textbf{risk associated with target resources} and the LLM's own \textbf{model uncertainty} in its decision-making process. When an agent proposes a novel task, the LLM judge synthesizes a just-in-time policy while also computing a composite risk score for the task and an uncertainty estimate for its own reasoning. High-risk or high-uncertainty requests trigger more stringent controls, such as requiring human approval. This dual consideration of external risk and internal confidence allows the model to enforce a more robust and adaptive version of the principle of least privilege, paving the way for safer and more trustworthy autonomous systems.


翻译:企业环境中自主AI智能体的激增带来了一个关键的安全挑战:如何管理那些不存在预定义策略的新兴、新颖任务的访问控制。本文提出了一种先进的安全框架,该框架通过使用大型语言模型(LLM)作为自主的、风险感知的判定器,扩展了基于任务的访问控制(TBAC)模型。该模型不仅基于智能体的意图做出访问控制决策,还明确考虑了与目标资源相关的固有**风险**以及LLM在其决策过程中自身的**模型不确定性**。当智能体提出一项新颖任务时,LLM判定器会即时合成一个策略,同时计算该任务的综合风险评分及其自身推理的不确定性估计。高风险或高不确定性的请求会触发更严格的控制措施,例如要求人工审批。这种对外部风险和内部置信度的双重考量,使得该模型能够执行一种更鲁棒、更自适应的最小权限原则,为构建更安全、更可信的自主系统铺平了道路。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员