Holistic linear regression extends the classical best subset selection problem by adding additional constraints designed to improve the model quality. These constraints include sparsity-inducing constraints, sign-coherence constraints and linear constraints. The $\textsf{R}$ package $\texttt{holiglm}$ provides functionality to model and fit holistic generalized linear models. By making use of state-of-the-art conic mixed-integer solvers, the package can reliably solve GLMs for Gaussian, binomial and Poisson responses with a multitude of holistic constraints. The high-level interface simplifies the constraint specification and can be used as a drop-in replacement for the $\texttt{stats::glm()}$ function.


翻译:全线回归通过增加旨在改进模型质量的额外限制来扩展经典最佳子集选择问题。 这些限制包括聚变诱导限制、符号一致性限制和线性限制。 $\ textsf{R}$\ textt{holiglm} 软件包为模型提供了功能,并适合整体通用线性模型。 通过使用最先进的锥形混合整数解答器, 软件包可以可靠地解决高斯、 二流和普瓦森的GLMs, 并使用多种整体限制。 高级界面简化了约束性规范, 并可以用作 $\ textt{ stat: glm( )} 功能的倒置替换 。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月17日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员