Recent advancements in language models (LMs) have gained substantial attentions on their capability to generate human-like responses. Though exhibiting a promising future for various applications such as conversation AI, these LMs face deployment challenges on various devices due to their extreme computational cost and unpredictable inference latency. Such varied inference latency, identified as a consequence of uncertainty intrinsic to the nature of language, can lead to computational inefficiency and degrade the overall performance of LMs, especially under high-traffic workloads. Unfortunately, the bandwidth of these uncertainty sources is extensive, complicating the prediction of latency and the effects emanating from such uncertainties. To understand and mitigate the impact of uncertainty on real-time response-demanding systems, we take the first step to comprehend, quantify and optimize these uncertainty-induced latency performance variations in LMs. Specifically, we present RT-LM, an uncertainty-aware resource management ecosystem for real-time inference of LMs. RT-LM innovatively quantifies how specific input uncertainties, adversely affect latency, often leading to an increased output length. Exploiting these insights, we devise a lightweight yet effective method to dynamically correlate input text uncertainties with output length at runtime. Utilizing this quantification as a latency heuristic, we integrate the uncertainty information into a system-level scheduler which explores several uncertainty-induced optimization opportunities, including uncertainty-aware prioritization, dynamic consolidation, and strategic CPU offloading. Quantitative experiments across five state-of-the-art LMs on two hardware platforms demonstrates that RT-LM can significantly reduce the average response time and improve throughput while incurring a rather small runtime overhead.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2023年9月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员