In this work, we propose an adaptive geometric multigrid method for the solution of large-scale finite cell flow problems. The finite cell method seeks to circumvent the need for a boundary-conforming mesh through the embedding of the physical domain in a regular background mesh. As a result of the intersection between the physical domain and the background computational mesh, the resultant systems of equations are typically numerically ill-conditioned, rendering the appropriate treatment of cutcells a crucial aspect of the solver. To this end, we propose a smoother operator with favorable parallel properties and discuss its memory footprint and parallelization aspects. We propose three cache policies that offer a balance between cached and on-the-fly computation and discuss the optimization opportunities offered by the smoother operator. It is shown that the smoother operator, on account of its additive nature, can be replicated in parallel exactly with little communication overhead, which offers a major advantage in parallel settings as the geometric multigrid solver is consequently independent of the number of processes. The convergence and scalability of the geometric multigrid method is studied using numerical examples. It is shown that the iteration count of the solver remains bounded independent of the problem size and depth of the grid hierarchy. The solver is shown to obtain excellent weak and strong scaling using numerical benchmarks with more than 665 million degrees of freedom. The presented geometric multigrid solver is, therefore, an attractive option for the solution of large-scale finite cell problems in massively parallel high-performance computing environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2020年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员