Context. GitHub has introduced a new gamification element through personal achievements, whereby badges are unlocked and displayed on developers' personal profile pages in recognition of their development activities. Objective. In this paper, we present an exploratory analysis using mixed methods to study the diffusion of personal badges in GitHub, in addition to the effects and reactions to their introduction. Method. First, we conduct an observational study by mining longitudinal data from more than 6,000 developers and performed correlation and regression analysis. Then, we conduct a survey and analyze over 300 GitHub community discussions on the topic of personal badges to gauge how the community responded to the introduction of the new feature. Results. We find that most of the developers sampled own at least a badge, but we also observe an increasing number of users who choose to keep their profile private and opt out of displaying badges. Besides, badges are generally poorly correlated with developers' qualities and dispositions such as timeliness and desire to collaborate. We also find that, except for the Starstruck badge (reflecting the number of followers), their introduction does not have an effect. Finally, the reaction of the community has been in general mixed, as developers find them appealing in principle but without a clear purpose and hardly reflecting their abilities in the current form. Conclusions. We provide recommendations to GitHub platform designers on how to improve the current implementation of personal badges as both a gamification mechanism and as sources of reliable cues of ability for developers' assessment


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员