To increase statistical efficiency in a randomized experiment, researchers often use stratification (i.e., blocking) in the design stage. However, conventional practices of stratification fail to exploit valuable information about the predictive relationship between covariates and potential outcomes. In this paper, I introduce an adaptive stratification procedure for increasing statistical efficiency when some information is available about the relationship between covariates and potential outcomes. I show that, in a paired design, researchers can rematch observations across different batches. For inference, I propose a stratified estimator that allows for nonparametric covariate adjustment. I then discuss the conditions under which researchers should expect gains in efficiency from stratification. I show that stratification complements rather than substitutes for regression adjustment, insuring against adjustment error even when researchers plan to use covariate adjustment. To evaluate the performance of the method relative to common alternatives, I conduct simulations using both synthetic data and more realistic data derived from a political science experiment. Results demonstrate that the gains in precision and efficiency can be substantial.


翻译:在随机化实验中,为提高统计效率,研究者常在设计阶段采用分层(即区组化)方法。然而,传统的分层实践未能充分利用协变量与潜在结果之间预测关系的有价值信息。本文提出了一种自适应分层程序,用于在已知协变量与潜在结果间部分关系信息时提升统计效率。研究表明,在配对设计中,研究者可以对不同批次的观测进行重新匹配。为进行统计推断,本文提出了一种允许非参数协变量调整的分层估计量。随后,论文讨论了在何种条件下研究者可预期通过分层获得效率提升。研究证明,分层与回归调整形成互补而非替代关系,即使在研究者计划使用协变量调整时,也能防范调整误差。为评估该方法相对于常见替代方案的性能,本文使用合成数据以及源自政治学实验的更现实数据进行了模拟研究。结果表明,该方法在精确性与效率方面均可带来显著提升。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员