This study explores the use of automatic BLAS offloading and INT8-based emulation for accelerating traditional HPC workloads on modern GPU architectures. Through the use of low-bitwidth integer units and cache-coherent Unified Memory Architecture, we emulate double-precision matrix multiplications in the MuST application without code changes. We find that accuracy depends on both arithmetic precision and the properties of the operator, which can be dealt with through tunable precision emulation. Unlike traditional mixed-precision approaches, this method preserves original algorithms while optimizing hardware utilization. We showcases the potential of improving accuracy and performance at the same time. This work highlights the potential of AI-driven hardware to transform HPC, advocating for adaptive precision strategies in future scientific computing.


翻译:本研究探索了利用自动BLAS卸载和基于INT8的模拟技术,在现代GPU架构上加速传统高性能计算(HPC)工作负载的方法。通过采用低位宽整数单元和缓存一致统一内存架构,我们在未修改代码的情况下,于MuST应用中实现了双精度矩阵乘法的模拟。研究发现,计算精度既取决于算术精度,也受算子特性的影响,这一问题可通过可调精度模拟策略予以解决。与传统混合精度方法不同,本方法在保持原始算法不变的同时优化了硬件利用率。我们展示了同时提升精度与性能的潜力。本工作凸显了人工智能驱动硬件变革高性能计算领域的可能性,为未来科学计算中的自适应精度策略提供了理论依据。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员