Let $A$ be a sparse Hermitian matrix, $f(x)$ be a univariate function, and $i, j$ be two indices. In this work, we investigate the query complexity of approximating $\bra{i} f(A) \ket{j}$. We show that for any continuous function $f(x):[-1,1]\rightarrow [-1,1]$, the quantum query complexity of computing $\bra{i} f(A) \ket{j}\pm \varepsilon/4$ is lower bounded by $\Omega(\widetilde{\deg}_\varepsilon(f))$. The upper bound is at most quadratic in $\widetilde{\deg}_\varepsilon(f)$ and is linear in $\widetilde{\deg}_\varepsilon(f)$ under certain mild assumptions on $A$. Here the approximate degree $\widetilde{\deg}_\varepsilon(f)$ is the minimum degree such that there is a polynomial of that degree approximating $f$ up to additive error $\varepsilon$ in the interval $[-1,1]$. We also show that the classical query complexity is lower bounded by $\widetilde{\Omega}(2^{\widetilde{\deg}_{2\varepsilon}(f)/6})$. Our results show that the quantum and classical separation is exponential for any continuous function of sparse Hermitian matrices, and also imply the optimality of implementing smooth functions of sparse Hermitian matrices by quantum singular value transformation. The main techniques we used are the dual polynomial method for functions over the reals, linear semi-infinite programming, and tridiagonal matrices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
140+阅读 · 2019年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员