Due to the importance of linear algebra and matrix operations in data analytics, there is significant interest in using relational query optimization and processing techniques for evaluating (sparse) linear algebra programs. In particular, in recent years close connections have been established between linear algebra programs and relational algebra that allow transferring optimization techniques of the latter to the former. In this paper, we ask ourselves which linear algebra programs in MATLANG correspond to the free-connex and q-hierarchical fragments of conjunctive first-order logic. Both fragments have desirable query processing properties: free-connex conjunctive queries support constant-delay enumeration after a linear-time preprocessing phase, and q-hierarchical conjunctive queries further allow constant-time updates. By characterizing the corresponding fragments of MATLANG, we hence identify the fragments of linear algebra programs that one can evaluate with constant-delay enumeration after linear-time preprocessing and with constant-time updates. To derive our results, we improve and generalize previous correspondences between MATLANG and relational algebra evaluated over semiring-annotated relations. In addition, we identify properties on semirings that allow to generalize the complexity bounds for free-connex and q-hierarchical conjunctive queries from Boolean annotations to general semirings.


翻译:由于线性代数与矩阵运算在数据分析中的重要性,利用关系查询优化与处理技术来评估(稀疏)线性代数程序引起了广泛关注。近年来,线性代数程序与关系代数之间建立了紧密联系,使得后者的优化技术能够迁移至前者。本文旨在探究MATLANG中哪些线性代数程序对应于合取一阶逻辑的自由连接与q-层次片段。这两个片段均具备优越的查询处理特性:自由连接合取查询支持线性时间预处理后的常数延迟枚举,而q-层次合取查询更可实现常数时间更新。通过刻画MATLANG中对应的片段,我们由此识别出能够在线性时间预处理后实现常数延迟枚举及常数时间更新的线性代数程序片段。为获得这些结论,我们改进并推广了先前关于MATLANG与在半环标注关系上评估的关系代数之间的对应关系。此外,我们确定了半环的若干性质,使得自由连接与q-层次合取查询的复杂度界限能够从布尔标注推广至一般半环。

0
下载
关闭预览

相关内容

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 - 题图来自「维基百科」。
【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
专知会员服务
19+阅读 · 2021年8月15日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
从最大似然到EM算法:一致的理解方式
PaperWeekly
19+阅读 · 2018年3月19日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月2日
VIP会员
相关VIP内容
【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
专知会员服务
19+阅读 · 2021年8月15日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
从最大似然到EM算法:一致的理解方式
PaperWeekly
19+阅读 · 2018年3月19日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员