Anomaly detection in distributed systems such as High-Performance Computing (HPC) clusters is vital for early fault detection, performance optimisation, security monitoring, reliability in general but also operational insights. Deep Neural Networks have seen successful use in detecting long-term anomalies in multidimensional data, originating for instance from industrial or medical systems, or weather prediction. A downside of such methods is that they require a static input size, or lose data through cropping, sampling, or other dimensionality reduction methods, making deployment on systems with variability on monitored data channels, such as computing clusters difficult. To address these problems, we present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection) which combines DBSCAN and learning-based anomaly detection. DBSCAN clustering is used to find point anomalies in time-series data, mitigating the risk of missing outliers through loss of information when reducing input data to a fixed number of channels. A deep learning-based time-series anomaly detection method is then applied to the reduced data in order to identify long-term outliers. This hybrid approach reduces the chances of missing anomalies that might be made indistinguishable from normal data by the reduction process, and likewise enables the algorithm to be scalable and tolerate partial system failures while retaining its detection capabilities. Using a subset of the well-known SMD dataset family, a modified variant of the Eclipse dataset, as well as an in-house dataset with a large variability in active data channels, made publicly available with this work, we furthermore analyse computational intensity, memory footprint, and activation counts. DeepHYDRA is shown to reliably detect different types of anomalies in both large and complex datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员