Recent video inpainting methods often employ image-to-video (I2V) priors to model temporal consistency across masked frames. While effective in moderate cases, these methods struggle under severe content degradation and tend to overlook spatiotemporal stability, resulting in insufficient control over the latter parts of the video. To address these limitations, we decouple video inpainting into two sub-tasks: multi-frame consistent image inpainting and masked area motion propagation. We propose VidSplice, a novel framework that introduces spaced-frame priors to guide the inpainting process with spatiotemporal cues. To enhance spatial coherence, we design a CoSpliced Module to perform first-frame propagation strategy that diffuses the initial frame content into subsequent reference frames through a splicing mechanism. Additionally, we introduce a delicate context controller module that encodes coherent priors after frame duplication and injects the spliced video into the I2V generative backbone, effectively constraining content distortion during generation. Extensive evaluations demonstrate that VidSplice achieves competitive performance across diverse video inpainting scenarios. Moreover, its design significantly improves both foreground alignment and motion stability, outperforming existing approaches.


翻译:现有的视频修复方法通常利用图像到视频(I2V)先验来建模被遮挡帧之间的时序一致性。尽管在一般场景下有效,这些方法在内容严重退化时表现不佳,且往往忽略时空稳定性,导致对视频后半部分的控制不足。为解决这些局限性,我们将视频修复解耦为两个子任务:多帧一致的图像修复与遮挡区域运动传播。本文提出VidSplice这一新颖框架,通过引入间隔帧先验,利用时空线索引导修复过程。为增强空间连贯性,我们设计了协同拼接模块,采用首帧传播策略,通过拼接机制将初始帧内容扩散至后续参考帧。此外,我们引入精密的上下文控制模块,在帧复制后编码连贯先验,并将拼接视频注入I2V生成主干网络,有效约束生成过程中的内容畸变。大量实验评估表明,VidSplice在多样化视频修复场景中均取得具有竞争力的性能。其设计显著提升了前景对齐度与运动稳定性,性能优于现有方法。

0
下载
关闭预览

相关内容

图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2021年1月14日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员