This paper introduces novel Bellman mappings (B-Maps) for value iteration (VI) in distributed reinforcement learning (DRL), where multiple agents operate over a network without a centralized fusion node. Each agent constructs its own nonparametric B-Map for VI while communicating only with direct neighbors to achieve consensus. These B-Maps operate on Q-functions represented in a reproducing kernel Hilbert space, enabling a nonparametric formulation that allows for flexible, agent-specific basis function design. Unlike existing DRL methods that restrict information exchange to Q-function estimates, the proposed framework also enables agents to share basis information in the form of covariance matrices, capturing additional structural details. A theoretical analysis establishes linear convergence rates for both Q-function and covariance-matrix estimates toward their consensus values. The optimal learning rates for consensus-based updates are dictated by the ratio of the smallest positive eigenvalue to the largest one of the network's Laplacian matrix. Furthermore, each nodal Q-function estimate is shown to lie very close to the fixed point of a centralized nonparametric B-Map, effectively allowing the proposed DRL design to approximate the performance of a centralized fusion center. Numerical experiments on two well-known control problems demonstrate the superior performance of the proposed nonparametric B-Maps compared to prior methods. Notably, the results reveal a counter-intuitive finding: although the proposed approach involves greater information exchange -- specifically through the sharing of covariance matrices -- it achieves the desired performance with lower cumulative communication cost than existing DRL schemes, highlighting the crucial role of basis information in accelerating the learning process.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员