We study non-stationary linear contextual bandits through the lens of sequential Bayesian inference. Whereas existing algorithms typically rely on the Weighted Regularized Least-Squares (WRLS) objective, we study Weighted Sequential Bayesian (WSB), which maintains a posterior distribution over the time-varying reward parameters. Our main contribution is a novel concentration inequality for WSB posteriors, which introduces a prior-dependent term that quantifies the influence of initial beliefs. We show that this influence decays over time and derive tractable upper bounds that make the result useful for both analysis and algorithm design. Building on WSB, we introduce three algorithms: WSB-LinUCB, WSB-RandLinUCB, and WSB-LinTS. We establish frequentist regret guarantees: WSB-LinUCB matches the best-known WRLS-based guarantees, while WSB-RandLinUCB and WSB-LinTS improve upon them, all while preserving the computational efficiency of WRLS-based algorithms.


翻译:本研究通过序贯贝叶斯推理的视角探讨非平稳线性上下文赌博机问题。现有算法通常依赖于加权正则化最小二乘目标函数,而本研究提出加权序贯贝叶斯方法,该方法通过后验分布来跟踪时变奖励参数。我们的主要贡献是建立了WSB后验分布的新型集中不等式,该不等式引入了一个先验依赖项以量化初始信念的影响。我们证明这种影响会随时间衰减,并推导出易于处理的上界,使得该结果既能用于理论分析又能指导算法设计。基于WSB框架,我们提出了三种算法:WSB-LinUCB、WSB-RandLinUCB和WSB-LinTS。我们建立了频率学派的遗憾保证:WSB-LinUCB达到了基于WRLS的最佳已知性能保证,而WSB-RandLinUCB和WSB-LinTS则实现了更优的性能,同时保持了与基于WRLS算法相当的计算效率。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员