Background: Systems of systems are becoming increasingly dynamic and heterogeneous, and this adds pressure on the long-standing challenge of interoperability. Besides its technical aspect, interoperability has also an economic side, as development time efforts are required to build the interoperability artifacts. Objectives: With the recent advances in the field of large language models (LLMs), we aim at analyzing the effectiveness of LLM-based strategies to make systems interoperate autonomously, at runtime, without human intervention. Method: We selected 13 open source LLMs and curated four versions of a dataset in the agricultural interoperability use case. We performed three runs of each model with each version of the dataset, using two different strategies. Then we compared the effectiveness of the models and the consistency of their results across multiple runs. Results: qwen2.5-coder:32b was the most effective model using both strategies DIRECT (average pass@1 >= 0.99) and CODEGEN (average pass@1 >= 0.89) in three out of four dataset versions. In the fourth dataset version, which included an unit conversion, all models using the strategy DIRECT failed, whereas using CODEGEN qwen2.5-coder:32b succeeded with an average pass@1 = 0.75. Conclusion: Some LLMs can make systems interoperate autonomously. Further evaluation in different domains is recommended, and further research on reliability strategies should be conducted.


翻译:背景:系统之系统正变得日益动态化和异构化,这加剧了长期存在的互操作性挑战。除了技术层面,互操作性还具有经济层面的考量,因为构建互操作性构件需要投入开发时间。目标:随着大语言模型领域的最新进展,我们旨在分析基于LLM的策略在无需人工干预的情况下,使系统在运行时自主实现互操作的有效性。方法:我们选取了13个开源LLM,并在农业互操作性用例中构建了四个版本的数据集。我们使用两种不同策略,对每个模型在每个数据集版本上进行了三轮运行。随后比较了各模型的有效性及其在多轮运行中结果的一致性。结果:在四个数据集版本中的三个版本中,qwen2.5-coder:32b在使用DIRECT(平均pass@1 >= 0.99)和CODEGEN(平均pass@1 >= 0.89)两种策略时均表现出最高有效性。在包含单位转换的第四个数据集版本中,所有使用DIRECT策略的模型均失败,而使用CODEGEN策略的qwen2.5-coder:32b则以平均pass@1 = 0.75取得成功。结论:部分LLM能够使系统实现自主互操作。建议在不同领域进行进一步评估,并开展关于可靠性策略的深入研究。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员