Admittedly, Graph Convolution Network (GCN) has achieved excellent results on graph datasets such as social networks, citation networks, etc. However, softmax used as the decision layer in these frameworks is generally optimized with thousands of iterations via gradient descent. Furthermore, due to ignoring the inner distribution of the graph nodes, the decision layer might lead to an unsatisfactory performance in semi-supervised learning with less label support. To address the referred issues, we propose a novel graph deep model with a non-gradient decision layer for graph mining. Firstly, manifold learning is unified with label local-structure preservation to capture the topological information of the nodes. Moreover, owing to the non-gradient property, closed-form solutions is achieved to be employed as the decision layer for GCN. Particularly, a joint optimization method is designed for this graph model, which extremely accelerates the convergence of the model. Finally, extensive experiments show that the proposed model has achieved state-of-the-art performance compared to the current models.


翻译:诚然,图集网络(GCN)在诸如社交网络、引证网络等图表数据集方面取得了极佳的成果。然而,这些框架中用作决策层的软分子通常通过梯度下降而以数千次迭代的形式得到优化。此外,由于忽略了图形节点的内部分布,决策层可能导致半监督学习表现不尽如人意,而标签支持较少。为了解决上述问题,我们提出了一个新的图表深层次模型,其中为图解开采提供了一个非梯度决定层。首先,多重学习与标签地方结构保护相统一,以捕捉节点的地形信息。此外,由于非梯度特性,将实现封闭式解决方案作为GCN的决策层。特别是,为这一图形模型设计了一个联合优化方法,大大加快了模型的趋同速度。最后,广泛的实验表明,与当前模型相比,拟议的模型取得了最先进的性能。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员