As Large Language Models increasingly mediate human communication and decision-making, understanding their value expression becomes critical for research across disciplines. This work presents the Ethics Engine, a modular Python pipeline that transforms psychometric assessment of LLMs from a technically complex endeavor into an accessible research tool. The pipeline demonstrates how thoughtful infrastructure design can expand participation in AI research, enabling investigators across cognitive science, political psychology, education, and other fields to study value expression in language models. Recent adoption by University of Edinburgh researchers studying authoritarianism validates its research utility, processing over 10,000 AI responses across multiple models and contexts. We argue that such tools fundamentally change the landscape of AI research by lowering technical barriers while maintaining scientific rigor. As LLMs increasingly serve as cognitive infrastructure, their embedded values shape millions of daily interactions. Without systematic measurement of these value expressions, we deploy systems whose moral influence remains uncharted. The Ethics Engine enables the rigorous assessment necessary for informed governance of these influential technologies.


翻译:随着大型语言模型日益介入人类沟通与决策过程,理解其价值表达已成为跨学科研究的关键课题。本研究提出伦理引擎——一个模块化的Python流程,将LLMs的心理测量评估从技术复杂的任务转化为可及的研究工具。该流程展示了深思熟虑的基础设施设计如何拓展人工智能研究的参与度,使认知科学、政治心理学、教育学等领域的学者能够研究语言模型中的价值表达。爱丁堡大学研究者在威权主义研究中对该工具的近期应用验证了其研究效用,已处理超过10,000份跨多模型与多情境的AI响应。我们认为此类工具通过降低技术门槛同时保持科学严谨性,正在从根本上改变人工智能研究的格局。随着LLMs日益成为认知基础设施,其内嵌价值观正塑造着数百万次的日常交互。若缺乏对这些价值表达的系统性测量,我们将部署道德影响未知的系统。伦理引擎为实现这些影响深远技术的知情治理提供了必要的严谨评估手段。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员