Practical Quantum Machine Learning (QML) is challenged by noise, limited scalability, and poor trainability in Variational Quantum Circuits (VQCs) on current hardware. We propose a multi-chip ensemble VQC framework that systematically overcomes these hurdles. By partitioning high-dimensional computations across ensembles of smaller, independently operating quantum chips and leveraging controlled inter-chip entanglement boundaries, our approach demonstrably mitigates barren plateaus, enhances generalization, and uniquely reduces both quantum error bias and variance simultaneously without additional mitigation overhead. This allows for robust processing of large-scale data, as validated on standard benchmarks (MNIST, FashionMNIST, CIFAR-10) and a real-world PhysioNet EEG dataset, aligning with emerging modular quantum hardware and paving the way for more scalable QML.


翻译:实用量子机器学习(QML)在当前硬件上面临噪声、可扩展性有限以及变分量子电路(VQC)可训练性差等挑战。我们提出了一种多芯片集成VQC框架,系统性地克服了这些障碍。通过将高维计算任务划分到多个独立运行的较小量子芯片组成的集成系统中,并利用受控的芯片间纠缠边界,我们的方法显著缓解了训练中的贫瘠高原现象,提升了泛化能力,并独特地同时降低了量子误差的偏差与方差,且无需额外的误差缓解开销。这使得大规模数据的鲁棒处理成为可能,这一点在标准基准数据集(MNIST、FashionMNIST、CIFAR-10)以及真实的PhysioNet EEG数据集上得到了验证。该框架与新兴的模块化量子硬件发展趋势相契合,为更具可扩展性的QML铺平了道路。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员