Estimating the gradients of stochastic nodes in stochastic computational graphs is one of the crucial research questions in the deep generative modeling community, which enables the gradient descent optimization on neural network parameters. Stochastic gradient estimators of discrete random variables are widely explored, for example, Gumbel-Softmax reparameterization trick for Bernoulli and categorical distributions. Meanwhile, other discrete distribution cases such as the Poisson, geometric, binomial, multinomial, negative binomial, etc. have not been explored. This paper proposes a generalized version of the Gumbel-Softmax estimator, which is able to reparameterize generic discrete distributions, not restricted to the Bernoulli and the categorical. The proposed estimator utilizes the truncation of discrete random variables, the Gumbel-Softmax trick, and a special form of linear transformation. Our experiments consist of (1) synthetic examples and applications on VAE, which show the efficacy of our methods; and (2) topic models, which demonstrate the value of the proposed estimation in practice.


翻译:估计透视计算图中的随机节点梯度是深基因模型界的关键研究问题之一,它使得神经网络参数的梯度下降优化成为了神经网络参数的梯度优化。 广泛探索了离散随机变量的悬浮梯度估计器, 例如 Bernoulli 和 绝对分布 。 同时, 其它离散分布案例, 如 Poisson 、 几何、 二流、 多数值、 负二元等, 尚未被探索 。 本文提出了 Gumbel- Softmax 估计器的通用版本, 它可以对不局限于 Bernoulli 和 直径的通用离散分布进行重新校准。 拟议的估计器使用了离散随机变量、 Gumbel- 软体魔术 和 线性转换的特殊形式 。 我们的实验包括 (1) 合成示例和应用 VAE, 显示我们方法的功效; (2) 主题模型, 展示了拟议的估计方法的价值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
55+阅读 · 2020年9月7日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员