High-dimensional sparse data emerge in many critical application domains such as cybersecurity, healthcare, anomaly detection, and trend analysis. To quickly extract meaningful insights from massive volumes of these multi-dimensional data, scientists employ unsupervised analysis tools based on tensor decomposition (TD) methods. However, real-world sparse tensors exhibit highly irregular shapes, data distributions, and sparsity, which pose significant challenges for making efficient use of modern parallel architectures. This study breaks the prevailing assumption that compressing sparse tensors into coarse-grained structures (i.e., tensor slices or blocks) or along a particular dimension/mode (i.e., mode-specific) is more efficient than keeping them in a fine-grained, mode-agnostic form. Our novel sparse tensor representation, Adaptive Linearized Tensor Order (ALTO), encodes tensors in a compact format that can be easily streamed from memory and is amenable to both caching and parallel execution. To demonstrate the efficacy of ALTO, we accelerate popular TD methods that compute the Canonical Polyadic Decomposition (CPD) model across a range of real-world sparse tensors. Additionally, we characterize the major execution bottlenecks of TD methods on multiple generations of the latest Intel Xeon Scalable processors, including Sapphire Rapids CPUs, and introduce dynamic adaptation heuristics to automatically select the best algorithm based on the sparse tensor characteristics. Across a diverse set of real-world data sets, ALTO outperforms the state-of-the-art approaches, achieving more than an order-of-magnitude speedup over the best mode-agnostic formats. Compared to the best mode-specific formats, which require multiple tensor copies, ALTO achieves more than 5.1x geometric mean speedup at a fraction (25%) of their storage.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员