Distribution-as-response regression problems are gaining wider attention, especially within biomedical settings where observation-rich patient specific data sets are available, such as feature densities in CT scans (Petersen et al., 2021) actigraphy (Ghosal et al., 2023), and continuous glucose monitoring (Coulter et al., 2024; Matabuena et al., 2021). To accommodate the complex structure of such problems, Petersen and M\"uller (2019) proposed a regression framework called Fr\'echet regression which allows non-Euclidean responses, including distributional responses. This regression framework was further extended for variable selection by Tucker et al. (2023), and Coulter et al. (2024) (arXiv:2403.00922 [stat.AP]) developed a fast variable selection algorithm for the specific setting of univariate distributional responses equipped with the 2-Wasserstein metric (2-Wasserstein space). We present "fastfrechet", an R package providing fast implementation of these Fr\'echet regression and variable selection methods in 2-Wasserstein space, with resampling tools for automatic variable selection. "fastfrechet" makes distribution-based Fr\'echet regression with resampling-supplemented variable selection readily available and highly scalable to large data sets, such as the UK Biobank (Doherty et al., 2017).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员