Methods for split conformal prediction leverage calibration samples to transform any prediction rule into a set-prediction rule that complies with a target coverage probability. Existing methods provide remarkably strong performance guarantees with minimal computational costs. However, they require to use calibration samples composed by labeled examples different to those used for training. This requirement can be highly inconvenient, as it prevents the use of all labeled examples for training and may require acquiring additional labels solely for calibration. This paper presents an effective methodology for split conformal prediction with unsupervised calibration for classification tasks. In the proposed approach, set-prediction rules are obtained using unsupervised calibration samples together with supervised training samples previously used to learn the classification rule. Theoretical and experimental results show that the presented methods can achieve performance comparable to that with supervised calibration, at the expenses of a moderate degradation in performance guarantees and computational efficiency.


翻译:分割共形预测方法利用校准样本将任意预测规则转化为符合目标覆盖概率的集合预测规则。现有方法以极低的计算成本提供了极为强大的性能保证。然而,这些方法要求使用与训练样本不同的带标签样本作为校准集。这一要求可能带来极大不便:既阻碍了将所有带标签样本用于训练,又可能需要仅为校准目的而获取额外标签。本文提出了一种用于分类任务的无监督校准分割共形预测的有效方法。该方案通过无监督校准样本与先前用于学习分类规则的监督训练样本相结合,获得集合预测规则。理论与实验结果表明,所提方法在性能保证和计算效率方面仅承受适度折损,即可达到与监督校准相当的性能水平。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
29+阅读 · 2017年12月6日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
26+阅读 · 2018年2月27日
Arxiv
29+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员