The accurate robust and efficient transfer of the deformation gradient tensor between meshes of different resolution is crucial in cardiac electromechanics simulations. We present a novel method that combines rescaled localized Radial Basis Function (RBF) interpolation with Singular Value Decomposition (SVD) to preserve the positivity of the determinant of the deformation gradient tensor. The method involves decomposing the evaluations of the tensor at the quadrature nodes of the source mesh into rotation matrices and diagonal matrices of singular values; computing the RBF interpolation of the quaternion representation of rotation matrices and the singular value logarithms; reassembling the deformation gradient tensors at quadrature nodes of the destination mesh, to be used in the assembly of the electrophysiology model equations. The proposed method overcomes limitations of existing interpolation methods, including nested intergrid interpolation and RBF interpolation of the displacement field, that may lead to the loss of physical meaningfulness of the mathematical formulation and then to solver failures at the algebraic level, due to negative determinant values. The proposed method enables the transfer of solution variables between finite element spaces of different degrees and shapes and without stringent conformity requirements between different meshes, enhancing the flexibility and accuracy of electromechanical simulations. Numerical results confirm that the proposed method enables the transfer of the deformation gradient tensor, allowing to successfully run simulations in cases where existing methods fail. This work provides an efficient and robust method for the intergrid transfer of the deformation gradient tensor, enabling independent tailoring of mesh discretizations to the particular characteristics of the physical components concurring to the of the multiphysics model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员