Modern displays are capable of rendering video content with high dynamic range (HDR) and wide color gamut (WCG). However, the majority of available resources are still in standard dynamic range (SDR). As a result, there is significant value in transforming existing SDR content into the HDRTV standard. In this paper, we define and analyze the SDRTV-to-HDRTV task by modeling the formation of SDRTV/HDRTV content. Our analysis and observations indicate that a naive end-to-end supervised training pipeline suffers from severe gamut transition errors. To address this issue, we propose a novel three-step solution pipeline called HDRTVNet++, which includes adaptive global color mapping, local enhancement, and highlight refinement. The adaptive global color mapping step uses global statistics as guidance to perform image-adaptive color mapping. A local enhancement network is then deployed to enhance local details. Finally, we combine the two sub-networks above as a generator and achieve highlight consistency through GAN-based joint training. Our method is primarily designed for ultra-high-definition TV content and is therefore effective and lightweight for processing 4K resolution images. We also construct a dataset using HDR videos in the HDR10 standard, named HDRTV1K that contains 1235 and 117 training images and 117 testing images, all in 4K resolution. Besides, we select five metrics to evaluate the results of SDRTV-to-HDRTV algorithms. Our final results demonstrate state-of-the-art performance both quantitatively and visually. The code, model and dataset are available at https://github.com/xiaom233/HDRTVNet-plus.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员