We present a data-driven framework for the multiscale modeling of anisotropic finite strain elasticity based on physics-augmented neural networks (PANNs). Our approach allows the efficient simulation of materials with complex underlying microstructures which reveal an overall anisotropic and nonlinear behavior on the macroscale. By using a set of invariants as input, an energy-type output and by adding several correction terms to the overall energy density functional, the model fulfills multiple physical principles by construction. The invariants are formed from the right Cauchy-Green deformation tensor and fully symmetric 2nd, 4th or 6th order structure tensors which enables to describe a wide range of symmetry groups. Besides the network parameters, the structure tensors are simultaneously calibrated during training so that the underlying anisotropy of the material is reproduced most accurately. In addition, sparsity of the model with respect to the number of invariants is enforced by adding a trainable gate layer and using lp regularization. Our approach works for data containing tuples of deformation, stress and material tangent, but also for data consisting only of tuples of deformation and stress, as is the case in real experiments. The developed approach is exemplarily applied to several representative examples, where necessary data for the training of the PANN surrogate model are collected via computational homogenization. We show that the proposed model achieves excellent interpolation and extrapolation behaviors. In addition, the approach is benchmarked against an NN model based on the components of the right Cauchy-Green deformation tensor.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
详述DeepMind wavenet原理及其TensorFlow实现
深度学习每日摘要
12+阅读 · 2017年6月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
详述DeepMind wavenet原理及其TensorFlow实现
深度学习每日摘要
12+阅读 · 2017年6月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员