We propose a binary representation of categorical values using a linear map. This linear representation preserves the neighborhood structure of categorical values. In the context of evolutionary algorithms, it means that every categorical value can be reached in a single mutation. The linear representation is embedded into standard metaheuristics, applied to the problem of Sudoku puzzles, and compared to the more traditional direct binary encoding. It shows promising results in fixed-budget experiments and empirical cumulative distribution functions with high dimension instances, and also in fixed-target experiments with small dimension instances.


翻译:我们建议使用线性地图来二进制表达绝对值。 这个线性表达法保留了绝对值的周边结构。 在进化算法中, 这意味着每个绝对值都可以在单一突变中达到。 线性表达法嵌入标准的计量经济学中, 适用于数独谜题的问题, 与更传统的直接二进制编码相比。 它显示了固定预算实验和具有高维度的经验性累积分配功能以及具有小维度的固定目标实验中的良好结果 。

0
下载
关闭预览

相关内容

强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
8+阅读 · 2021年6月1日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Top
微信扫码咨询专知VIP会员