Recently, image-to-image translation methods based on contrastive learning achieved state-of-the-art results in many tasks. However, the negatives are sampled from the input feature spaces in the previous work, which makes the negatives lack diversity. Moreover, in the latent space of the embedings,the previous methods ignore domain consistency between the generated image and the real images of target domain. In this paper, we propose a novel contrastive learning framework for unpaired image-to-image translation, called MCCUT. We utilize the multi-crop views to generate the negatives via the center-crop and the random-crop, which can improve the diversity of negatives and meanwhile increase the quality of negatives. To constrain the embedings in the deep feature space,, we formulate a new domain consistency loss function, which encourages the generated images to be close to the real images in the embedding space of same domain. Furthermore, we present a dual coordinate channel attention network by embedding positional information into SENet, which called DCSE module. We employ the DCSE module in the design of generator, which makes the generator pays more attention to channels with greater weight. In many image-to-image translation tasks, our method achieves state-of-the-art results, and the advantages of our method have been proved through extensive comparison experiments and ablation research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员