Not everybody can be equipped with professional photography skills and sufficient shooting time, and there can be some tilts in the captured images occasionally. In this paper, we propose a new and practical task, named Rotation Correction, to automatically correct the tilt with high content fidelity in the condition that the rotated angle is unknown. This task can be easily integrated into image editing applications, allowing users to correct the rotated images without any manual operations. To this end, we leverage a neural network to predict the optical flows that can warp the tilted images to be perceptually horizontal. Nevertheless, the pixel-wise optical flow estimation from a single image is severely unstable, especially in large-angle tilted images. To enhance its robustness, we propose a simple but effective prediction strategy to form a robust elastic warp. Particularly, we first regress the mesh deformation that can be transformed into robust initial optical flows. Then we estimate residual optical flows to facilitate our network the flexibility of pixel-wise deformation, further correcting the details of the tilted images. To establish an evaluation benchmark and train the learning framework, a comprehensive rotation correction dataset is presented with a large diversity in scenes and rotated angles. Extensive experiments demonstrate that even in the absence of the angle prior, our algorithm can outperform other state-of-the-art solutions requiring this prior. The code and dataset are available at https://github.com/nie-lang/RotationCorrection.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员