Vision-language large models are moving toward the unification of visual understanding and visual generation tasks. However, whether generation can enhance understanding is still under-explored on large data scale. In this work, we analysis the unified model with a concise structure, UniHetero, under large-scale pretraining (>200M samples). Our key observations are: (1) Generation can improve understanding, but Only if you generate Semantics, Not Pixels. (2) Generation reveals a superior Data Scaling trend and higher Data Utilization. (3) Autoregression on Input Embedding is effective to capture visual details.


翻译:视觉语言大模型正朝着视觉理解与视觉生成任务的统一方向发展。然而,在大数据规模下,生成能否增强理解能力仍未得到充分探索。在本工作中,我们分析了一个结构简洁的统一模型——UniHetero,并在大规模预训练(>2亿样本)下进行了研究。我们的关键发现是:(1)生成能够提升理解能力,但前提是生成语义,而非像素。(2)生成展现出更优的数据缩放趋势和更高的数据利用率。(3)在输入嵌入上进行自回归能有效捕捉视觉细节。

0
下载
关闭预览

相关内容

从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。
DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
论文笔记之attention mechanism专题1:SA-Net(CVPR 2018)
统计学习与视觉计算组
16+阅读 · 2018年4月5日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
论文笔记之attention mechanism专题1:SA-Net(CVPR 2018)
统计学习与视觉计算组
16+阅读 · 2018年4月5日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员