This paper deals with fairness in stable marriage problems. The idea studied here is to achieve fairness thanks to a Generalized Gini Index (GGI), a well-known criterion in inequality measurement, that includes both the egalitarian and utilitarian criteria as special cases. We show that determining a stable marriage optimizing a GGI criterion of agents' disutilities is an NP-hard problem. We then provide a polynomial time 2-approximation algorithm in the general case, as well as an exact algorithm which is polynomial time in the case of a constant number of non-zero weights parametrizing the GGI criterion.


翻译:本文论述稳定的婚姻问题的公平性。本文所研究的理念是,通过普遍化的吉尼指数(GGI)实现公平性。 通用吉尼指数是衡量不平等的一个众所周知的标准,它既包括平等性标准,也包括作为特殊情况的实用性标准。我们表明,确定稳定婚姻,优化GGI关于代理人丧失利用能力的标准,是一个棘手的问题。然后,我们在一般情况下提供了一种多婚制2比2的算法,以及一种精确的算法,在连续数的非零权重使GGI标准平衡的情况下,这种算法是多婚制时间。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
已删除
AI掘金志
7+阅读 · 2019年7月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员