We develop a physics-based model for classical computation based on autonomous quantum thermal machines. These machines consist of few interacting quantum bits (qubits) connected to several environments at different temperatures. Heat flows through the machine are here exploited for computing. The process starts by setting the temperatures of the environments according to the logical input. The machine evolves, eventually reaching a non-equilibrium steady state, from which the output of the computation can be determined via the temperature of an auxilliary finite-size reservoir. Such a machine, which we term a ``thermodynamic neuron'', can implement any linearly-separable function, and we discuss explicitly the cases of NOT, 3-MAJORITY and NOR gates. In turn, we show that a network of thermodynamic neurons can perform any desired function. We discuss the close connection between our model and artificial neurons (perceptrons), and argue that our model provides an alternative physics-based analogue implementation of neural networks, and more generally a platform for thermodynamic computing.


翻译:我们提出了一种基于自主量子热机的经典计算物理模型。这些机器由少数相互作用的量子比特组成,这些量子比特连接到多个不同温度的环境。计算通过利用流经机器的热流实现。计算过程首先根据逻辑输入设置各环境的温度。机器随之演化,最终达到非平衡稳态,此时可通过一个辅助有限尺寸热库的温度确定计算输出。我们将此类机器称为“热力学神经元”,它能够实现任何线性可分函数,并具体讨论了NOT门、3-多数表决门和NOR门的实现案例。进一步地,我们证明由热力学神经元构成的网络可以执行任意期望函数。我们探讨了该模型与人工神经元(感知机)的紧密联系,论证了该模型为神经网络提供了一种基于物理原理的模拟实现方案,更广义而言,为热力学计算提供了一个平台。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2021年2月13日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
29+阅读 · 2017年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
21+阅读 · 2021年2月13日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
29+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员