Safety in the face of uncertainty is a key challenge in robotics. In this work, we propose a real-time capable framework to generate safe and task-efficient robot trajectories for stochastic control problems. For that, we first formulate the problem as a chance-constrained optimisation problem, in which the probability of the controlled system to violate a safety constraint is constrained to be below a user-defined threshold. To solve the chance-constrained optimisation problem, we propose a Monte--Carlo approximation relying on samples of the uncertainty to estimate the probability of violating a safety constraint given a controller. We use this approximation in the motion planner VP-STO to solve the sampled-based problem. Consequently, we refer to our adapted approach as CC-VPSTO, which stands for Chance-Constrained VP-STO. We address the crucial issue concerning the Monte--Carlo approximation: given a predetermined number of uncertainty samples, we propose several ways to define the sample-based problem such that it is a reliable over-approximation of the original problem, i.e. any solution to the sample-based problem adheres to the original chance-constrained problem with high confidence. The strengths of our approach lie in i) its generality, as it does not require any specific assumptions on the underlying uncertainty distribution, the dynamics of the system, the cost function, and for some of the proposed sample-based approximations, on the form of inequality constraints; and ii) its applicability to MPC-settings. We demonstrate the validity and efficiency of our approach on both simulation and real-world robot experiments. For additional material, please visit https://sites.google.com/oxfordrobotics.institute/cc-vpsto.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员